CHROM. 9606

Note

Paper chromatographic behaviour of α -DNP-lysine in comparison with other DNP-amino acids

ATSUHIKO MACHIDA*, TADAO OGAWA, TOSHIO ONO and YASUHIRO KAWANISHI School of Hygienic Science, Kitasato University, 1-chome, Asamizodai, Sagamihara-shi, Kanagawa-ken 228 (Japan)

(First received April 2nd, 1976; revised manuscript received June 4th, 1976)

It has been demonstrated that L-lysine serves as a branching point of the polypeptide chain, in materials such as biocitin¹, bacitracin² and the bacterial cell wall³, the ε -amino group of the L-lysine participating in the formation of an amide bond. It would be expected that α -DNP-lysine would be obtained from biocitin, in which the ε -amino group is bound with a biocityl group and the α -amino group is free, by dinitrophenylation followed by hydrolysis. However, no report on the clear separation of α -DNP-lysine from other DNP-amino acids could be found, and we have therefore examined this separation by one- and two-dimensional paper chromatography.

EXPERIMENTAL

DNP-amino acids

 α -DNP-lysine was synthesized by the methods of Bezas and Zervas⁴ and Sanger⁵. The product was characterized as α -DNP-lysine by various physico-chemical measurements: NMR and IR spectroscopy, m.p. determination and elemental analysis. Other DNP-amino acids were purchased from Seikagaku Kogyo (Tokyo, Japan).

Paper chromatography

The paper chromatographic separation of DNP-amino acids was performed by ascending development on Toyo No. 51 filter-paper with the solvent systems (1) pyridine-isoamyl alcohol-1.6 M ammonia solution (3:7:10)⁶, (2) tert.-amyl alcohol-0.1 M phthalate (pH 6)⁷ and (3) 1.5 M sodium phosphate (pH 6)⁸. A 2% solution of ninhydrin in n-butanol and Sakaguchi reagent⁹ were used for staining the chromatograms.

RESULTS AND DISCUSSION

The one-dimensional paper chromatographic separation of α -DNP-lysine is shown in Fig. 1. α -DNP-lysine was separated clearly from ε -DNP-lysine using the above solvent systems. Solvent system 2 was useful for the separation of water-

^{*} Present address: Department of Immunology, The Kitasato Institute, 5-9-1, Shirokane, Minato-ku, Tokyo 108, Japan.

NOTES 391

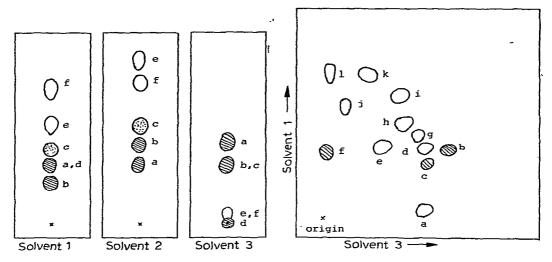


Fig. 1. Paper chromatographic separation of α -DNP-lysine from ε -DNP-lysine and α, ε -di-DNP-lysine. Solvent systems: see text. Spots: a, α -DNP-lysine; b, ε -DNP-lysine; c, α -DNP-arginine; d, σ -DNP-tyrosine; e, di-DNP-histidine; f, di-DNP-lysine. Hatched spots are the ninhydrin-positive spots and the dotted spots are the Sakaguchi-positive spots.

Fig. 2. Two-dimensional paper chromatographic separation of α -DNP-lysine from other DNP-amino acids. Solvent systems: first development, solvent 1; second development, solvent 3. Spots: a, DNP-aspartic acid; b, α -DNP-lysine; c, ϵ -DNP-lysine; d, DNP-serine; e, DNP-glycine; f, ϵ -DNP-tyrosine; g, ϵ -DNP-arginine; h, DNP-alanine; i, DNP-leucine; j, di-DNP-histidine; k, DNP-phenylalanine; l, di-DNP-lysine. Hatched spots are the ninhydrin-positive spots.

soluble DNP-amino acids, including α -DNP-lysine. The spot of α -DNP-lysine was coloured by ninhydrin reagent, as was that of ε -DNP-lysine. The spot of α -DNP-arginine on a paper chromatogram developed with solvent system 1 or 2 could be detected with the Sakaguchi reagent, but could not be detected on a chromatogram developed with solvent system 3.

Solvent systems 1 and 3 were useful for the two-dimensional separation of α -DNP-amino acids, as shown in Fig. 2. Solvent system 1 should be used for the first development and 3 for the second development. Both the mono-DNP-lysines and other water-soluble DNP-amino acids and the ether-soluble DNP-amino acids used in this work were clearly separated by these solvent systems. Therefore, this two-dimensional solvent system is expected to be useful for the quantitative separation of α -DNP-lysine as well as other DNP-amino acids.

REFERENCES

- L. W. Wright, L. G. Gresson, R. H. Skeggs, R. T. Wood, R. L. Peck, D. E. Wolf and K. Folkers, J. Amer. Chem. Soc., 74 (1952) 1996.
- 2 G. G. F. Newton and E. P. Abraham, Biochem. J., 53 (1953) 604.
- 3 H. Sugiyama, S. Kotani, K. Kato, S. Sashiba and T. Amano, Biken J., 11 (1968) 13.
- 4 B. Bezas and L. Zervas, J. Amer. Chem. Soc., 83 (1961) 719.
- 5 F. Sanger, Biochem. J., 39 (1945) 507.
- 6 G. Biserte and R. Outeux, Bull. Soc. Chim. Biol., 33 (1951) 50.
- 7 A. L. Levy, Nature (London), 174 (1954) 126.
- 8 J. B. Lepson and I. Smith, Nature (London), 172 (1953) 1100.
- 9 S. Sakaguchi, J. Biochem. (Tokyo), 37 (1950) 231.